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ABSTRACT 

We present a simple, robust and computationally efficient 
method for the semi-automatic segmentation of the prostate 
in TRUS (Transrectal Ultrasound) image. The method relies 
on a variational formulation based on a deformable super-
ellipse and a region energy based on the assumption of a 
Rayleigh distribution. Instead of using the classical level-set 
approach, we directly insert the implicit representation of a 
deformable super-ellipse into the energy to minimize. This 
yields a super-ellipse evolution able to accurately segment 
prostate and surrounding tissues while handling boundary 
gaps on the contour.   

Index Terms — Prostate, Echography, Segmentation, 
Variational active contours, Rayleigh distribution, 
Deformable super-ellipse.

1. INTRODUCTION 

Automatic segmentation of prostate in TRUS image has 
been the subject of great research effort during the last past 
years. The main difficulties which arise when processing 
TRUS images of the prostate are the poor contrast between 
the prostate and the surrounding tissues, the non-
homogenous texture of the prostate together with speckle 
noise, missing boundaries due to acoustic shadowing and 
boundaries parallel to the ultrasound beam (see Figs. 2, 4 
and 5). 

As a consequence, classical segmentation techniques 
using gradient information fail when used directly on these 
images. Several pre-processing steps are then required, in 
order to remove the speckle noise and increase contrast 
between the different regions [1,2]. In order to handle 
boundary gaps in the contour, several authors proposed to 
introduce a shape prior, allowing thereby constraining the 
geometry of the resulting contour [3]. For that purpose, 
statistical mean shape built from a large database of 
manually delineated prostate contours was introduced. An 
example of such approach is described in [4], where an 
active shape model coupled with Gabor texture filter was 
successfully applied to the 2D and 3D segmentation of the 
prostate. 

In [5], the authors show that the prostate boundary may 
be successfully approximated by a super-ellipse with 
additional global deformation terms such as tapering and 
bending. Since the super-ellipse is deformed through 
gradient information, the initial contour needs to be placed 
close to the contour of the prostate. Therefore, they propose 
a Bayesian approach which also uses statistics on the pose 
and shape of the contour. 

In contrast with this last method, we propose in this 
paper a variational approach where the active contour is 
modelled through the implicit representation of a super-
ellipse. We minimize a region energy based on the 
assumption of a Rayleigh distribution of the intensities 
within the image. This approach has the following potential 
advantages over the previous works: 

• The shape prior is simple and do not imply the manual 
processing of large amount of data needed to build 
mean shape, which is moreover orientation dependant. 

• The use of region terms based on image statistical 
features is more robust than gradient information for 
US images and avoids the use of heavy pre-processing 
steps [1,3,5]. 

Note that a similar idea has been suggested by [6] in 
the field of echocardiography where a simple ellipse is used 
as the shape constraint. Our approach is more general since 
we propose a more flexible shape a priori through a super-
ellipse with tapering. 

We present in section 2 the theoretical formulation of the 
super-ellipse evolution. We give in section 3 the details of 
the application of the approach to TRUS prostate images. 
We finally present the obtained experimental results in 
section 4.  

2.  THEORICAL FORMULATION 

2.1 Choice of the shape model 

Since the acquisition is made with a sectorial probe, the 
raw US data are given in polar geometry. We decide to work 
directly with this representation, since the shape of the 
prostate is fairly simple when using this geometry 
(see Fig. 4) and can be accurately modelled by a deformable 
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super-ellipse, without the additional bending term used in 
[5]. Moreover, working directly on such data removes the 
need for data interpolation which may induce artefacts since 
our approach is based on statistics. 

2.2 Super-Ellipse formulation

A point ( , )P x y  belonging to a super-ellipse with main axes 
aligned with the coordinate axes verifies the following 
implicit equation: 
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where 1 is the squareness and (a,b) the semi-axes length of 
the super-ellipse. 

This equation can be made more general by allowing 
rotation, translation and linear tapering along y axis. The 
linear tapering is defined by the following transform: 
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where [ ]1,1t −∈  is the tapering parameter.  
Let us define Tr as the translation of vector (xc,yc), R as 

the rotation of angle , and Tp the tapering of parameter t. 
The equation of the deformed super-ellipse is then given as: 
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is the set of parameters defining the super-ellipse. 

2.3. Super-ellipse evolution 

We consider the following general energy to minimize [7]:  

( ( )) ( ( ))
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in outE g I d g I d
Ω Ω

= +x x x x  (5) 

where g is a region term reflecting the image features 
characterizing the object to be segmented. In conventional 
approaches, this energy can be minimized using level-set 
methods [7,8].  

In contrast with these classical approaches, we 
constrain the solution to be a super-ellipse by incorporating 
the implicit function SΓ  into (5), which yields: 

( ) ( ) ( ) ( )[ ( ) ( ) ( )(1 ( ))]out inI IE g H S g H S dε εΓ Γ
Ω

= + −x x x x x  (6) 

where (.)Hε  is a regularized Heaviside function [7]. In 
order to reach a local minimum of the energy (5) according 

to the seven parameters defining the super-ellipse, we use a 
gradient-descent method which yields: 
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The derivatives of the energy are given as: 
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where (.)εδ  is a regularized Dirac function [7].  
Thanks to their analytic form, the derivatives of SΓ

according to { }kv  may be easily computed. We use different 

time steps { }kλ  since the super-ellipse parameters have not 
the same geometric meaning and the same range of values. 

2.4 Statistical region term 

In order to take into account the distribution of the 
intensities into the energy to minimize, we look for the curve 
that maximizes the likelihood function given by the product 
of the inner and the outer probability [8,9,10]. This leads to 
minimize the following energy:

( ) ( )log ( ) log ( )
outin

in outE p I d p I d
Ω Ω

= − + −x xx x  (9)

where ( )inp I  and ( )outp I  are, respectively, the probability 
of the intensity I to belong to, resp., inΩ  and outΩ . With this 
formulation, more sophisticated assumptions on the 
statistical distribution of the intensity in inΩ  and outΩ may 
be introduced.  

2.5. Numerical Implementation  

In order to reach the local minimum of (9), we use a 
conventional Expectation Minimization Technique. First, 
considering SΓ fixed (i.e. { }kv  fixed), we estimate the 
distribution parameters in inΩ  and outΩ  (see Section 3)
Then, by considering log ( )Ip  fixed for all pixels ( , )i j  in 
Ω , we minimize (9) according to { }kv  by using (7). The 
equation (7) is discretized as:
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The two above steps are repeated until convergence of 
the parameters. Fig. 1 shows an example of the method on a 
simulated image representing a super-ellipse with additive 
Gaussian noise (SNR = 20 dB) and a simulated acoustic 
shadow. For that example, we use a Gaussian distribution of 
intensities. The initial contour is a small circle (Fig. 1a). The 
convergence is reached in 70 iterations, and the final super-
ellipse parameters found by the algorithm are close to the 
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theoretical ones. This example shows that, by using the 
super-ellipse shape constraint, the algorithm is able to 
segment partially occluded object.  

a)   b) 

Figure 1. Segmentation of a simulated image 
(120 x 120 pixels) using our approach 

3. APPLICATION TO PROSTATE ECHOGRAPHIC 
POLAR IMAGES 

3.1. Image statistics 

The a priori distribution for image intensities is chosen to be 
the Rayleigh distribution, which is a classical statistical 
model for the envelope signal (without logarithmic 
compression) in the case of fully developed speckle [8], i.e. 

2

2 22
( ) exp( )I I

p I
σ σ

−= . The Rayleigh distribution parameter 

σ  is computed using its maximum likelihood 

expression [8]: 2
2

2N

Iσ = , where N is the number of 

samples. Fig. 2 shows that this distribution is able to 
accurately fit the empirical distributions of intensities within 
the different regions of the prostate. 
  

     

a) b) 

Figure 2. Experimental intensity distribution and Rayleigh 
distribution fitting within different parts of the prostate 

3.2. Partitioning the image domain 

Due to attenuation and to the inhomogeneous structure of the 
tissue, the parameters of the Rayleigh distribution depends 
on the location within the prostate. Fig. 2 illustrates this 
phenomenon on two regions where the parameter σ  is 
0.0017 (Fig. 2a) and 0.00058 (Fig. 2b). 

We propose to take this non-stationarity into account 
by letting the distribution parameters vary along the 
orthoradial direction according to the center of the super-
ellipse. This results in replacing ( )Ip  by ( )

i
Ipϕ  in (9), 

where iϕ  represents an angular sector of the image 
according to the center of the ellipse. The parameter 

iϕσ of  

i
pϕ  is estimated by only considering pixels included in iϕ . 

The choice of the angular partitioning yields the usual 
trade-off between resolution and variance in the estimation 
of the distribution parameters. Indeed, small sectors ensure 
high spatial resolution but in turns yield a high variance of 
the estimations. We choose in the present implementation to 
partition the whole domain into eight angular sectors 
according to the current super-ellipse center, as shown in 
Fig. 3. The optimality of this choice is difficult to assert, 
however experimental results show that such partition yields 
satisfying segmentations and that increasing the number of 
sectors does not bring any improvement. 

  

Figure 3. Angular partition for prostate images 

4.  RESULTS AND EXPERIMENTS 

The initial contour is selected as circle centered on the 
prostate (Fig. 4, dot circles). The time-steps { }kλ  are 
initialized to 1 for [ , , , ]c cx y a b  and to 0.005 for 1[ , , ]tθ ε . 
The parameter of the regularized Dirac function is set to 0.1.
These parameters were kept constant for all experiments. 

We test our algorithm on several TRUS images. 
Examples of segmentation in the initial polar coordinates are 
shown in Fig. 4. Four examples of resulting segmentation in 
Cartesian coordinates are shown in Fig. 5. 

Thanks to the super-ellipse constraint, the algorithm is 
able to segment the prostate boundary despite of the acoustic 
shadow in the bottom of the prostate. These examples also 
demonstrate that by performing the segmentation directly on 
the polar images, additional deformation of the super-ellipse 
such as bending is not necessary (Fig. 4). 

1ϕϕϕϕ
2ϕϕϕϕ3ϕϕϕϕ

4ϕϕϕϕ

5ϕϕϕϕ

6ϕϕϕϕ 7ϕϕϕϕ
8ϕϕϕϕ
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Moreover, the partition of the prostate into several 
angular sectors allows to handle the large differences in the 
intensity distribution within the different parts of the prostate 
and therefore to accurately separate the prostate and the 
surrounding tissues.  

a)    b) 
Figure 4. Examples of prostate segmentation on two prostate 
polar images 

a)  b) 

c)   d)

Figure 5. Examples of prostate segmentation on four 
prostate Cartesian images (performed in 78, 75, 45, and 61 
iterations) 

5.  CONCLUSIONS AND PERSPECTIVES 

We proposed a new approach for prostate segmentation 
in TRUS image, using a variational formulation based on a 
deformable super-ellipse and a region energy based on the 
assumption of a Rayleigh distribution. The preliminary 
results show that the shape constraint allows the algorithm to 
handle the main difficulties in prostate images, in particular 
large gaps in the boundary induced by acoustic shadowing. 
The interest of the approach relies on the fact that it avoids 
the pre-processing steps associated to gradient-based 
methods and that it does not need statistical mean shape for 
constraining the algorithm. 

The preliminary obtained results are very promising 
but a larger clinical evaluation will be necessary to validate 
the robustness of the approach. Moreover, several 
improvements may be introduced in the algorithm. One 
future improvement may be the introduction of more 

sophisticated distributions, better adapted to the different 
distributions within the prostate.  Finally, we plan to extend 
the algorithm from 2D to 3D by using super-ellipsoids. 
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